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A more general treatment is given of the field equations of the model for strong 
gravity proposed by the author in 1976. It seems possible to treat strong gravity and 
strong interaction by the same formalism, suggesting that strong gravity is just an 
aspect of strong interaction. The essential idea in these models is that a hadron is a 
de Sitter microsphere of radius of about 1 fm and the requisite gauge field is a 
fourth-rank tensor in the de Sitter space of the hadron. A three-dimensional formula- 
tion of the model is presented and further possibilities outlined. 

1. I N T R O D U C T I O N  

Recen t ly  the au tho r  (1976) p r o p o s e d  a m o d e l  for  s t rong gravi ty  using 

the va r ia t iona l  pr inc iPle  

~ f  I ( - g ) l / 2 d 4 x = O  (1.1) 

with 

I = P ~bcd[ Rab, d _ A(gacgba -- g~dgbc) ] + K L  (1.2) 

R,,bc d be ing  the curva ture  tensor  a n d  pobcd a fou r th - rank  tensor  hav ing  the 
s y m m e t r y  proper t ies  of  R "b~d with 20 a lgebra ica l ly  i n d e p e n d e n t  compo-  
nents ;  A and  K are  cons tants .  L is the  Lag rang i a n  dens i ty  of  "nongrav i t a -  
t iona l"  fields. Var ia t ions  of p,,bcd a n d  g,,b lead,  respect ively,  to the  

equa t i ons  

Rab~a = A (  g~cgba - gaagb~) (1.3) 

abcd ~ Dabcd rf~bd P;ac -- A~,ac ~ = . , ~  (1.4) 
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the constant K being redefined. It may be noted that the constancy of A 
follows from equation (1.3) even if it were a scalar function of the 
coordinates only in the variational principle. 

It was shown further that equation (1.4) leads to the Di rac-F ie rz -  
Pauli-type equation for massive spin-2 particles if the following identifica- 
tion is made: 

pabcd =gach bd + gbdh ac _ gadh bc __ gbch ad (1.5) 

and the subsidiary conditions are chosen as 

( h a b +  igl abh~t);b =0,  h=-gab hab (1.6) 

h ab being a symmetric second-rank tensor. Thus the above can be taken as 
a model for the f-meson field of strong gravity if the coupling constant K is 
of the same order of magnitude as the strong interaction coupling constant 
and A is such that we have a de Sitter microsphere of radius of about 1 fm. 
This suggests that the two processes of strong gravity and strong interac- 
tion are fundamentally linked together and a more general treatment of the 
above formalism should lead to a possible interpretation of strong gravity 
as an aspect of strong interaction. 

2. A MORE GENERAL TREATMENT 

Instead of making the identification (1.5), we impose the following 
conditions on pabcz to make the problem determinate: 

pbd-~gacPabcd = togbd (2.1) 

where to is a scalar function. Taking the trace of both sides of equation 
(1.4) we get the following differential equation for to: 

g aco,);a c - -  4Ato = K T  (2.2) 

Thus to represents a scalar massive field whose source is T. 
Equation (1.4) can also be written in the operator form 

g abpqgcdrs(v c V a -- gacA)Pqspr = 2 K T  bd (2.3) 

where 

g abpq ~ ( g ap g bq _ g ,,qg bp ) (2.4) 
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V is the symbol for covariant differentiation in the de Sitter space of the 
badron (space of constant curvature). 

Even without considering the solution of equation (2.3) we may arrive 
at certain interesting consequences of the above formalism based on the 
algebraic properties of the tensor p~bca and equation (2.1) following the 
well-known method of classification of gravitational fields due to Petrov 
(1969). But whereas Petrov based his classification on the curvature tensor 
or the Weyl tensor, our classification scheme will be based on pabca and 
the background space is a space of constant curvature. Thus following 
Sarfatti's treatment (1975) we can make the following tentative surmises. 

If o~ is zero in equation (2.1) then we recover all the results of Sarfatti 
with the conformal tensor C abcd replaced by pabcd. The eigenvalue equa- 
tion is 

p,,b Z ca_ ~ zab  (2.5) 
c d  J - -  a j  

where Zj ab= - Z f  a is a complex eigenbivector with complex eigenvalue ~j; 
j runs between 1 tojm~x, the number of linearly independent eigenbivectors 
which is 3, 2, 1, respectively, for the Petrov types I, II, and III (Petrov, 
1969). 

Since ~0= 0 the tensor pabca has vanishing contractions and so 

Jmax 

Y, ~ = 0  (2.6) 
j = l  

In view of equation (2.6) the Petrov type I will have complex 3 • 3 
matrix representations with zero trace and so type I pAS tensors (A, B 
being composite indices) may be represented in terms of the elements of 
the SU(3) algebra in a coordinate-independent way. For other interesting 
and suggestive results including the chiral distinction in the formalism we 
refer to Sarfatti's paper (1975). 

In the case when ~oea0, equation (2.6) has to be replaced by (Petrov, 
1969) 

Jmax 

~] ~ = - o ~  (2.7) 
j ~ l  

with ~0 determined by equation (2.2), the source term of which is KT. This 
will imply the breaking of the SU(3) symmetry but a Petrov-type classifica- 
tion will still be possible. If the above viewpoint is correct then the fact 
that symmetry breaking in strong interactions mainly implies lifting of 
mass degeneracy will have an elegant explanation because T is closely 
linked with inertial mass. 
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3. THREE-DIMENSIONAL FORMULATION 

We may represent the P tensor in terms of two symmetric second-rank 
tensors which are orthogonal to a timelike congruence of curves, the unit 
tangent vector being u p , i.e., 

uPup = - 1 (3.1) 

The procedure is analogous to the electromagnetic case in Minkowski 
space when the field tensor F~b is partitioned into two 3-vectors E and H in 
the 3-space t = const. For Petrov classification this approach was success- 
fully used by Misra and Singh (1966, 1967). 

With the help of the P tensor and u p we construct the following 
tensors: 

Co~= ea~dubu ~ 

na~ = * e o ~ u ~ u a  (3.2) 

where * P~bcd is the dual of P a b c d  defined by 

1 n mn (3.3) * Pabcd -- ~ e~bm~ rid 

There are no more possibilities because of the condition (2.1) since the left 
dual of p abca is the same as its right dual and the double dual is minus 
times p~ca. 

We may easily verify the following properties of Gac and Hac : (i) they 
are symmetric tensors; (ii) Gabub ----- nabUb = 0; (iii)G ~G~ = - to, H~ = 0; (iv) 
the ranks of the matrices Gaband H ab are 3. 

Thus given to, G ab and H ab together constitute 6 + 6 - 2 =  10 indepen- 
dent components, which is exactly the number of independent components 
of the tensor pabcd subject to (2.1) given to. 

The explicit expression for pabcd in terms of u p, G ab and H ab may be 
obtained from the following expression (Misra and Singh, 1967): 

( P +  i*P)abcd=(g+ ie)abpq(g+ ie)ca, suPur(G+ i l l )  qs (3.4) 

from which we find 

pabca = ( g,,bpqg~d,~ -- eabpqe~d,~) Gq, upu, - ( g'~Pqe ~a,~ + eabpqg~a,-~) Hq~upu, 

= e-~c~(G) + ? a ~ f f H )  (3.5) 
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After carrying out straightforward calculations we may show that 

pabcd( G) ~MacTbd + Mbdy ac- Marly bc- Mbcy ad (3.6) 

with 

- -  ab 1 ab .[ ab M ab =G -- ~ Gg , _ ~ g a b  +2u%b (3.7) 

e a b c d ( n ) ~ - - - e c d r S u r [  H~sbU a -  Hsqu b ] -e~bPqup[ Hqau c -  HqU d] (3.8) 

It may be verified that 

pbd =ga~p~b~a = gaceabcd( G )= -- Gg bd =togbd 

i.e., 

ga~pabca(H)=O (3.9) 

The field equations (1.4), i.e., 

e abcd( G ); ac -[- e abcd( H );ac -- Atog bd = gTbd (3.10) 

can be decoupled into 

and 

p abcd( G ) ; a  c __ Atogt, a = KTba (3.11) 

pabcd(H);ac = 0 (3.12) 

since the covariant divergences of the left-hand sides of (3.11) and (3.12) 
are separately zero. Thus without loss of generality we may put the axial 
field pabcd (H) to be zero since it does not interact with the field Pabcd(G). 
Thus we finally get the field equations in terms of the G field alone. These 
are  

[ MaCybd + Mbdya~-- M~d'fOC-- M~y"d];~ -- Atogbd= KTbd (3.13) 

with to determined by equation (2.2). Equivalently, equation (3.13) may be 
written in the operator form as 

g abpqg cdrS(Vc Va -- Agac) [ Mqs Ypr ] = K T b d  (3.14) 

determining the field Gqs. The number of independent equations repre- 
sented by equation (3.13) is nine minus the four divergence identities, that 
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is, five [the assumption of equation (2.2) reduces the number of equations 
from ten to nine], which exactly matches the number of independent 
components, which are ten minus the five relations Gabub = 0 and Ga ~ = - t o  
[to being determined by equation (2.2)]. Thus essentially we have a massive 
spin-2 field with five components represented by G ab and a scalar massive 
field represented by to, and to that extent this case is more general than the 
earlier model (Mahanta, 1976), which is a pure spin-2 massive field. 

4. CONCLUSIONS 

The crucial role in the above formalism is played by relation (2.1). 
Thus if we can think of some other more general relation represented by 
ten equations [of course equation (2.1) essentially is equivalent to nine only 
since we introduce a new scalar to], then we may have more general cases 
involving axial-types of fields also. Also equations of the type (2.3) or 
(3.14) are very interesting in their own right since they are linear in nature, 
but of course the solution is a matter of future investigation. The existence 
of an energy-momentum complex has been already demonstrated for the 
above models (Mahanta and Dadhich, 1976). 
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